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Abstract

Introduction

Circulating microRNAs (miRNA) are promising biomarkers for human diseases. Our study
hypothesizes that circulating miRNA would reveal candidate biomarkers related to airway
hyperresponsiveness (AHR) and provide biologic insights into asthma epigenetic
influences.

Methods

Serum samples obtained at randomization for 160 children in the Childhood Asthma Man-
agement Program were profiled using a TagMan miRNA array set. The association of the
isolated miRNA with methacholine PC,o was assessed. Network and pathway analyses
were performed. Functional validation of two significant miRNAs was performed in human
airway smooth muscle cells (HASMs).

Results

Of 155 well-detected circulating miRNAs, eight were significantly associated with PCyq with
the strongest association with miR-296-5p. Pathway analysis revealed miR-16-5p as a net-
work hub, and involvement of multiple miRNAs interacting with genes in the FoxO and
Hippo signaling pathways by KEGG analysis. Functional validation of two miRNA in HASM
showed effects on cell growth and diameter.

Conclusion

Reduced circulatory miRNA expression at baseline is associated with an increase in PCyo.
These miRNA provide biologic insights into, and may serve as biomarkers of, asthma sever-
ity. miR-16-5p and -30d-5p regulate airway smooth muscle phenotypes critically involved in
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asthma pathogenesis, supporting a mechanistic link to these findings. Functional ASM phe-
notypes may be directly relevant to AHR.

l. Introduction

Asthma is a chronic inflammatory respiratory disease that affects greater than 300 million
people worldwide [1]. It is characterized by airway obstruction due to a combination of
smooth muscle hyperresponsiveness and inflammation [2]. The economic costs for asthma
including drug therapy and hospitalizations is significant [3]. It remains challenging to gen-
erate risk assessment, predict prognosis, and determine optimal treatment response in
asthmatics.

Circulating microRNAs (miRNAs) are promising biomarkers for human diseases [4] and
may be helpful in a variety of clinical scenarios from risk assessment to monitoring response
to treatment [5]. miRNA characteristics and function have been well described in the literature
[6]. In brief, miRNAs are a class of small RNAs that inhibit gene expression by binding to the
3’-untranslated region (UTR) of messenger RNAs to degrade or suppress the translation of the
mRNA. Given the availability of miRNA mimics and antagonists, these small RNAs have been
proposed as therapeutic targets. Circulating miRNAs are highly stable in the serum [7].
miRNA plasma biomarkers have been proposed for neurological conditions [8], cancer detec-
tion/prognosis [9], cardiovascular disease [10], and other conditions including an emerging
role in respiratory diseases [11]. Translational methods have been applied in order to generate
screening tests [12].

Prior studies of circulating miRNA in asthma have been performed. One study explored
serum miRNA expression and detected three miRNAs in childhood asthma patients with sig-
nificantly higher expression than healthy controls [13]. Other studies have shown differential
expression of miRNA in epithelial and airway cells between asthma and healthy controls [14].
A recent study explored differential expression of circulating miRNA in asthmatics, nonasth-
matic patients with allergic rhinitis, and normal patients and was able to identify a subset of
circulating miRNA expressed in asthmatic and allergic rhinitis patients [15]. Studies are lack-
ing regarding quantitative severity measures, which may be more revealing of specific asthma
pathobiology and resistant to misclassification bias.

Methacholine PC,, is a quantitative marker of airways responsiveness, which is a cardinal
feature of asthma and has been tightly linked to exacerbations and other asthma outcomes.
Our study investigated the association of circulating miRNA with methacholine PC,, at time
of randomization in the Childhood Asthma Management Program (CAMP) [16]. Airway
hyperresponsiveness (AHR) in CAMP was an inclusion criterion for the trial; the degree of
airway responsiveness has been linked to disease severity [17]. Our hypothesis is that specific
miRNAs may be mediating AHR thereby providing unique biologic insights into asthma
pathogenesis. We detected AHR related miRNAs previously associated with asthma, but not
PC,, in addition to a novel association of miR-296, that may have an immunomodulatory
effect. Pathway analysis of the PC, associated miRNAs resulted in identification of two
pathways known to be biologically significant for AHR. Functional validation of miR-16-5p
and miR-30d-5p in human airway smooth muscle cells (HASM) demonstrated effects on cell
growth and average cell diameter, respectively, supporting a mechanistic link to these
findings.
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Il. Materials and methods

CAMP (Clinicaltrials.gov register: NCT00000575) was a multi-center, randomized, double-
blinded clinical trial evaluating safety and efficacy of inhaled budesonide vs. nedocromil vs.
placebo in 1041 pediatric patients over a mean 4.3 years. Trial design and methodology have
been detailed [18]. Inclusion criteria were notable for children aged 5-12 years, chronic
asthma symptoms, and PC,g < 12.5 mg/mL. Children were excluded if their asthma was
severe, for a confounding or complicating condition, or if the child could not perform accept-
able spirometry or methacholine challenge. Methacholine challenge was performed 2 weeks
prior to randomization [16].

Blood serum samples from 160 CAMP subjects obtained at randomization were profiled
for miRNA as described [19]. Technical replicates were assessed in ~10% of the population
cohort demonstrating high miRNA-miRNA correlations. To limit the effect of race on miRNA
expression (20), all subjects were self-identified non-Hispanic Caucasians. miRNA were anno-
tated with usage of miRBase [20] release 21 (www.mirbase.org/). Analysis was limited to miR-
NAs detected in >50% of samples. The CAMP Genetics Ancillary Study was approved by each
individual study center’s Internal Review Board (IRB). Informed consent and assent was
obtained from parents and participants, respectively.

For data analysis, quantile normalization on the detected miRNAs was performed sample-
wise to the mean of the data matrix using MatLab (MathWorks Inc., Natick, MA) function
quantilenorm. Least squares linear regression (both univariate and multivariate) was performed
using R [21] to identify miRNA (miR cycle threshold or CT value) associated with the pulmo-
nary function phenotype of interest, log, PCy. A least squares multivariate linear regression
model including miR CT value, age, sex, and height was also calculated for each miRNA. A sen-
sitivity analysis to assess outlier influence, and non-parametric models was also performed. The
p-values were corrected using the Benjamini and Hochberg false discovery rate (FDR).

The miRNA dataset is available at the NCBI Gene Expression Omnibus (GEO, http://www.
ncbi.nih.gov/geo/) GSE74770.

A regulatory network between miRNA and genes was created with usage of Cytoscape
(http://www.cytoscape.org/) [22] and CyTargetLinker (http://projects.bigcat.unimaas.nl/
cytargetlinker/) [23] with Regulatory Interaction in Network Analysis (RegIN) miRTarBase
release 6.1 (http://projects.bigcat.unimaas.nl/cytargetlinker/regins/regins-mirtarbase/) [24].
The Database for Annotation, Visualization and Integrated Discovery (DAVID, Version 6.8
(10/2016), https://david.ncifcrf.gov/home.jsp [25] was used for KEGG [26, 27] pathway analy-
sis and gene ontology.

Functional validation of two significant miRNA was performed in human airway smooth
muscle (HASM) cells as previously detailed [28]. The cells were transfected with 10nM of
either scramble control (AllStars Negative Control siRNA, Qiagen) or miR mimic (Qiagen)
using RNAiMax (Life Technology) according to manufacturer’s protocol. Seventy-two hours
after transfection, cells were trypsinized for 8 minutes and then measured for both cell number
and cell size by Moxi Z Cell Analyzer (Orflo). Cell growth was presented as the percentage of
cell number relative to scramble control. Average cell diameter (um) was compared in mimic-
transfected versus scramble-transfected HASM cells. Data (mean+SE) were obtained from
three independent experiments.

llIl. Results

Study population

Population characteristics of the 160 CAMP subjects are shown in Table 1. The cohort was
limited to self-identified non-Hispanic whites due to the significant effects of race on miRNA
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Table 1. Characteristics of the CAMP cohort subset.

Characteristic Value (Standard Deviation)

Age - yr 8.8 (2.1)

Sex - no. (%) Female - 73 (45.6%), Male - 87 (54.4%)
Height - cm 132.7 (13.6)

PCyo - mg/mL 1.95 (2.38)

loga(PCyp) - mg/mL 0.06 (1.66)

https://doi.org/10.1371/journal.pone.0180329.t001

expression [29]. For the selected individuals, the global characteristics at randomization are
representative of the larger CAMP non-Hispanic white cohort.

Circulatory miRNA association with PCyq

There were a total of 754 non-housekeeping miRNA mapping to mirBase release 21 on the
array, and 155 (20.6%) miRNA were detected in at least 50% of the samples. Eight microRNAs
were significantly associated with PC,q (Table 2), based on a nominal p-value < 0.05 at a FDR
p-value < 0.20. The latter was chosen as a higher cut-off given the nature of this hypothesis
generating experiment. Based on prior literature, five of these eight miRNA (63%) had prior
evidence of differential expression in human asthma. All associations had a positive slope such
that as miR cycle threshold increased so did the PC,; this corresponds to a relationship of
increasing miR CT (decreasing miRNA expression) with increasing PC,, (decreasing AHR).
The strongest association was found with PC,, and hsa-miR-296-5p, as shown in Fig 1. Sensi-
tivity analysis (S1 Table) revealed no significant changes in parameters for the models with the
exception of non-significance of hsa-miR-30d. Subsequent multivariate analysis including
miR CT, age, sex, and height was consistent with the univariate model (52 Table). Nonpara-
metric analysis including both rank-order univariate and multivariate models were also per-
formed and were consistent with the parametric models except for the significance of hsa-
miR-451a in the nonparametric model (S3 and S4 Tables). Further investigation of miR-30d

Table 2. Circulatory miRNA association by least squares linear regression with methacholine PC,, (univariate model, unranked) with detection of

miRNA in at least 50% of samples.

miR
hsa-miR-296-5p
hsa-miR-548b-5p
hsa-miR-138-5p
hsa-miR-16-5p
hsa-miR-1227-3p
hsa-miR-30d-5p
hsa-miR-203a-3p
hsa-miR-128-3p
hsa-miR-942-5p
hsa-miR-451a
hsa-miR-212-3p
hsa-miR-143-3p
hsa-miR-638
hsa-miR-25-3p

Asthma Associated? miR slope miR p-value 95% Cl Lower 95% CIl Upper
N 0.460 0.0001* 0.238 0.683
N 0.328 0.002* 0.126 0.531
Y 0.368 0.003* 0.129 0.608
Y 0.197 0.005* 0.061 0.332
N 0.327 0.005* 0.100 0.555
Y 0.201 0.006* 0.060 0.342
Y 0.203 0.007* 0.057 0.350
Y 0.587 0.012* 0.132 1.042
N 0.242 0.015 0.047 0.436
N 0.197 0.016 0.037 0.357
N 0.290 0.020 0.046 0.533
N 0.387 0.035 0.028 0.747
Y 0.208 0.048 0.002 0.414
N 0.219 0.049 0.001 0.437

* Significant by FDR adjusted p-value, p < 0.20 cut-off

https://doi.org/10.1371/journal.pone.0180329.t002
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24 2 28
hsa-miR-296 Cycle Threshold

Fig 1. Representative scatter plot of serum miR-296 cycle threshold and log,PC,, in the CAMP cohort with least squares
regression line and 95% confidence interval.

https://doi.org/10.1371/journal.pone.0180329.9001

demonstrated significance in the parametric and non-parametric models with miR-30d cycle
threshold characterized by principally having high and low CT values (bimodality) rather than
unimodality. This bimodality likely explains non-significance in the sensitivity analysis, while
suggesting that miR-30d may still have functional relationship with AHR.

Pathway and ontology analysis

Pathway analysis of the significant miRNAs (S5 Table) was performed with usage of Cytoscape
and CyTargetLinker. The miRNA based on both nominal and FDR p-values were used to gen-
erate and create a network with Cytoscape and CyTargetLinker (Fig 2) containing multiple
genes. The resultant genes were analyzed with DAVID for KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathway analysis with the FoxO and Hippo signaling pathways being the
most relevant to asthma (Table 3, Figs 3 and 4).

Gene ontology (GOTERM_BP_DIRECT) analysis also revealed functionality of the net-
work related to translation, RNA processing, post-transcriptional regulation of gene expres-
sion, ncRNA metabolic process, and other processes (S6 Table). These functions are consistent
with the known actions of miRNA targeting.

Functional validation

Based on our prior miRNA sequencing of human airway smooth muscle cells, [28] of the miR-
NAs in the PC,, network (Fig 2), two, miR-16-5p and miR-30d-5p, are significantly expressed.
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hsa-miR-128-3p

hsa-miR-296-5p

hsa-miR-16-5p

hsa-miR-203a-3p

hsa-miR-30d-5p

hsa-miR-1227-3p

hsa-miR-548b-5p

Fig 2. miRNA (red circle) and validated miRNA targeted genes (light magenta circles) predicted by
miRTarbase 6.1 in Cytoscape CyTargetLinker with miR-16 having a central connection to other miRNA in
the gene network.

https://doi.org/10.1371/journal.pone.0180329.9002

Table 3. DAVID Top 10 KEGG pathway analysis of genes directed from validated miRNA targeting.

We therefore evaluated the effect of these miRNA on HASM phenotypes using miR-mimics.
Mimics of miR-16-5p decreased and miR-30d-5p increased cell growth and average cell diam-

eter, respectively, compared to scramble control (Fig 5).

IV. Discussion

In this study, we examined serum samples from 160 CAMP asthmatics and found 8 miRNA
significantly associated with PC,o, a defining measure of airways hyperresponsiveness. Based

Term Number of Genes in Percent of Genes Compared to P-value | Corrected P-value
Pathway Total (%) (Benjamini)

Signaling pathways regulating pluripotency of | 53 2.0 9.0x 2.6x1077

stem cells 1071

Pathways in cancer 103 3.9 1.7x 25x107°
1077

Pancreatic cancer 27 1.0 3.0x 1.1x10™
107°

FoxO signaling pathway 44 1.7 2.8x10° [1.1x10™

Hippo signaling pathway 48 1.8 25x 1.2x10™
107

Notes: Threshold for count of 2, EASE 0.1. Table sorted by corrected P-value (Benjamini). The total number of genes with DAVID ID is 2665.

https://doi.org/10.1371/journal.pone.0180329.t003
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Fig 3. DAVID KEGG pathway analysis; miR targeted genes (red star) are involved in the FoxO Signaling Pathway.
https://doi.org/10.1371/journal.pone.0180329.9003
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https://doi.org/10.1371/journal.pone.0180329.g004
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Fig 5. Effect of miR-16-5p and miR-30d-5p on cell growth and average cell diameter, respectively compared to scramble
control. HASM cells were transfected with 10 nM of either scramble control or miR-16-5p mimic (left panel; or miR-30d-5p in right
panel). Seventy-two hours after transfection, cells were trypsinized and measured for both cell number and cell size by Moxi Z Cell
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https://doi.org/10.1371/journal.pone.0180329.9005

on prior literature, five of the eight miRNA (63%) had evidence of differential expression
related to human asthma, but not PC,0, with a good portion of these in case-control studies of
human bronchial epithelial cells. Three novel miRNAs were identified, including our strongest
association, miR-296-5p. Pathway analysis of the miRNA targets implicates effects of both the
Hippo and FoxO signaling pathways with both pathways implicated in airways hyperrespon-
siveness [30, 31]. Lastly, functional validation demonstrated that miR-16-5p resulted in
decreased airway smooth muscle cell growth and miR-30d-5p increased airway smooth muscle
cell size compared to scramble controls.

Our most significant association was found with hsa-miR-296-5p (Table 2). There are no
previous reports in the literature regarding this miRNA in association with asthma. miR-296
targets IKBKE, which is involved in signaling pathways including Toll-like receptor signaling
and signal transduction prompting apoptosis [32]. IKBKE is highly expressed in immune cells
and is a known target of the NFkB gene [33]. The NFkB pathway’s involvement in asthma and
inflammation has been well described in the literature [34], and includes modulation of AHR
in allergen challenged mice [35]. Moreover, IKBKE itself is a known therapeutic target for
asthma, with IKBKE targeting demonstrating significant attenuation of airways responsiveness
and inflammation in a murine model of asthma [36]. Therefore, miR-296 may attenuate
immune response and could modulate AHR via the NFkB pathway.

miR-16-5p was also significant in our study and differential expression of this miRNA in
asthmatic airway cells has been reported [37]. Expression profiling of human airway biopsies
has showed miR-16 to be highly expressed, leading to the hypothesis that miR-16 along with
other miRNAs may have a significant influence on gene expression in the airways [38]. Our
network analysis demonstrated that miR-16 plays a key role as the central hub, both interact-
ing with other miRNAs and mediating expression of dozens of genes (Fig 2). Thus, miR-16
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appears to play a notable role in the modulation of genes influencing airways hyperresponsive-
ness in asthma. In addition to its central effect on downstream gene expression, miR-16 mim-
ics result in decreased airway smooth muscle growth. While the exact significance of this
finding is unknown, prior work focused on small airway cell layers suggests that differential
growth between layers may mediate different effects on airway buckling [39].

As mentioned, several of our other AHR associated miRNA, including hsa-miR-30d, -128,
-138, and -203a, have been detected in studies involving human airway cells of asthmatics [14].
The association of hsa-miR-203 has been validated in epithelial cells from a small number of
asthmatics and healthy subjects with identification of the top-ranked predicted target, aqua-
porin gene (AQp4). In turn, the expression of AQp4 was subsequently noted to be significantly
higher in asthmatic cells [14]. Other studies have shown up-regulation of miR-203 in serum of
children with atopic dermatitis and increased IgE level [40] in addition to airway epithelial cell
apoptosis [41]. Thus miR-203 may indirectly affect airways responsiveness via an inflamma-
tory mechanism. In contrast, our work demonstrates that miR-30d-5p increases average
HASM cell diameter compared to scramble controls. Increased airway smooth muscle cell size
can result in both further mechanical airway narrowing in addition to increased contribution
of inflammatory mediators [42]. Increase in airway smooth muscle tissue mass related to both
hypertrophy and hyperplasia has been noted a major driver of airway narrowing and thus
AHR in asthmatics [43]. It is very likely that miRNA act via increases in ASM cell size/diame-
ter and thus, mechanistically may directly cause increased AHR (decreased PC20).

Focusing on validated miRNA targets, pathway analysis from our associated miRNAs was
notable for multiple genes in both the FoxO and Hippo signaling pathways (Figs 3 and 4). For
the former pathway, a mouse experiment showed alternative activation of alveolar macro-
phages with resultant type 2 allergic airway inflammation with subsequent airway remodeling
[30]. For the latter pathway, it has been shown that it is a notable regulatory pathway with ver-
satile function including a key gene (Yes-associated protein or YAP) implicated in airway
smooth muscle hyperplasia [31]. Both of these pathways have a plausible link to the phenotype
of airways hyperresponsiveness. As noted above, miR-16 also appears to be a central hub in
our serum microRNA network and may work in concert with other miRNA to modulate
immune pathways and subsequently AHR. Functional validation would be needed for further
elucidation of possible molecular mechanisms between miRNAs and asthma related to this
pathway. Lastly, gene ontology analysis (S6 Table) demonstrated processes such as RNA pro-
cessing, post-transcriptional regulation of gene expression, and other likely putative effects of
miRNAs.

This study has several strengths including a large sample size of pediatric asthma patients
from the CAMP cohort, a large number of interrogated miRNAs, validation of prior associa-
tions in the literature with our reported miRNA findings, and subsequent functional validation
of miRNA in HASM. The large sample size and number of interrogated miRNAs provides a
good breadth of characterization and power to detect associations in light of lower starting
concentrations of miRNA in the circulation. Additionally, the CAMP cohort was clinically
well characterized with standard methodologies including methacholine challenge testing,
which should minimize potential for measurement error. Analysis of biological replicates as
discussed in the methods section also showed high miRNA-miRNA correlations. Although the
CAMP serums were stored for years prior to this interrogation, prior studies have shown the
stored samples can result in reliable miRNA concentrations months to years later [44]. Lastly,
miRNA targeting is an imprecise science with new associations being discovered on a regular
basis. However, our study used miRTarBase (validated miRNA-target interaction), which
assesses only functionally annotated miRNAs, lending functional credence to our network and
pathway analyses; this was enhanced by our functional studies in HASM cells.
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In summary, this study detected eight circulating miRNAs associated with PC,q in a pediat-
ric asthma population with mild-moderate persistent asthma. These miRNA appear to be asso-
ciated with individual and pathway evidence of immune modulation that could affect AHR;
complementary functional validation of miR-16-5p and miR-30d-5p in HASM demonstrate
effects on cell growth and diameter, respectively. The majority of these miRNAs had been asso-
ciated with asthma in prior studies. Nonetheless, the most significant association was a novel
association with miR-296, and this miRNA may be a viable serum biomarker for altered
immunity and AHR in pediatric asthmatic patients.

Further study of our PCy, associated miRNAs, both in terms of external validation and
additional functional mechanisms, may provide insight into epigenetic influences in asthma
pathobiology and have clinical implications such as risk assessment and treatment responses.
Given that miRNA can therapeutically decrease airways responsiveness in murine models of
asthma [45-47], future work may also yield novel therapeutic approaches to targeting asthma
via miRNA modulation of AHR.
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